
Singular Value Decomposition X. Du

• Motivation: we know that we can decompose a symmetric matrix into A = QDQT

using eigenvalue and eigenvector analysis.

• As it turns out, we can also decompose any m× n matrix A = UΣV T .
– A = UΣV T is the singular value decomposition.
– U is an m×m orthogonal matrix and V is an n× n orthogonal matrix.

– Σ is an m × n block matrix of the form Σ =

(
D O
O O

)
, where D is a diagonal

matrix of singular values σi.
– The column vectors of U are the left-singular vectors and the column vectors

of V are the right-singular vectors.
– For positive semi-definite matrices, the singular values and the singular vectors

are the same as the eigenvalues and eigenvectors.

• For any m× n matrix A, consider ATA.

– ATA is symmetric.
– The singular values of A squared are the eigenvalues of ATA. All eigenvalues of
ATA are real and non-negative, since ATA is positive semi-definite.

– Note the utility of ATA. It can be used to determine whether or not a matrix has
linearly independent column vectors.

• Finding the singular value decomposition:
– Note that ATA = V ΣTUTUΣV T = V ΣTΣV T . ΣTΣ is just an m × m diagonal

matrix with the diagonal entries as the singular values squared.
– Note that AV = UΣ, so A~vi = ~uiσi.
– Step 1: Compute ATA.
– Step 2: Compute the singular values σi of A by taking the square roots of the

eigenvalues of ATA.
– Step 3: Compute the right-singular vectors ~vi in V by finding the normalized

eigenvectors of ATA.
– Step 4: Compute the left-singular vectors ~ui in U by using ~ui = 1

σi
A~vi.

∗ Alternatively, you can find the normalized eigenvectors of AAT .

• Application: Principal Component Analysis (PCA)
– Suppose you have vectors ~x1, ..., ~xm ∈ Rn that you want to compress into k-

dimensions, where k ≤ n. The set of data is also centered, i.e. for each j ∈ [1,m],
E[~xij] = 0 across all i.

– Put these vectors as columns of matrix X. The mean of each row should be 0.
– PCA aims to find the k directions in the data with the greatest variance, which

would preserve the most information possible.
– Find the SVD of X, i.e. find X = UΣV T . Note that X = σ1~u1~v

T
1 + σ2~u2~v

T
2 + ...,

where ~ui and ~vi are the ith left and right-singular vectors respectively.
– Take the k largest singular values with their associated singular vectors. These

left-singular vectors are the principal components in PCA, and the rows of V
represent the compressed data. To decompress the data, compute X ′ = σ1~u1~v

T
1 +

...+ σk~uk~v
T
k .


