Singular Value Decomposition

- Motivation: we know that we can decompose a symmetric matrix into $A = QDQ^T$ using eigenvalue and eigenvector analysis.
- As it turns out, we can also decompose any $m \times n$ matrix $A = U\Sigma V^T$.
 - $-A = U\Sigma V^T$ is the singular value decomposition.
 - U is an $m \times m$ orthogonal matrix and V is an $n \times n$ orthogonal matrix.
 - Σ is an $m \times n$ block matrix of the form $\Sigma = \begin{pmatrix} D & O \\ O & O \end{pmatrix}$, where D is a diagonal matrix of singular values σ_i .
 - The column vectors of U are the **left-singular vectors** and the column vectors of V are the **right-singular vectors**.
 - For positive semi-definite matrices, the singular values and the singular vectors are the same as the eigenvalues and eigenvectors.
- For any $m \times n$ matrix A, consider $A^T A$.
 - $-A^T A$ is symmetric.
 - The singular values of A squared are the eigenvalues of $A^T A$. All eigenvalues of $A^T A$ are real and non-negative, since $A^T A$ is positive semi-definite.
 - Note the utility of $A^T A$. It can be used to determine whether or not a matrix has linearly independent column vectors.
- Finding the singular value decomposition:
 - Note that $A^T A = V \Sigma^T U^T U \Sigma V^T = V \Sigma^T \Sigma V^T$. $\Sigma^T \Sigma$ is just an $m \times m$ diagonal matrix with the diagonal entries as the singular values squared.
 - Note that $AV = U\Sigma$, so $A\vec{v}_i = \vec{u}_i\sigma_i$.
 - Step 1: Compute $A^T A$.
 - Step 2: Compute the singular values σ_i of A by taking the square roots of the eigenvalues of $A^T A$.
 - Step 3: Compute the right-singular vectors \vec{v}_i in V by finding the normalized eigenvectors of $A^T A$.
 - Step 4: Compute the left-singular vectors \vec{u}_i in U by using $\vec{u}_i = \frac{1}{\sigma_i} A \vec{v}_i$. * Alternatively, you can find the normalized eigenvectors of $A A^T$.
- Application: Principal Component Analysis (PCA)
 - Suppose you have vectors $\vec{x}_1, ..., \vec{x}_m \in \mathbb{R}^n$ that you want to compress into kdimensions, where $k \leq n$. The set of data is also centered, i.e. for each $j \in [1, m]$, $E[\vec{x}_{ij}] = 0$ across all i.
 - Put these vectors as columns of matrix X. The mean of each row should be 0.
 - PCA aims to find the k directions in the data with the greatest variance, which would preserve the most information possible.
 - Find the SVD of X, i.e. find $X = U\Sigma V^T$. Note that $X = \sigma_1 \vec{u}_1 \vec{v}_1^T + \sigma_2 \vec{u}_2 \vec{v}_2^T + ...,$ where \vec{u}_i and \vec{v}_i are the *i*th left and right-singular vectors respectively.
 - Take the k largest singular values with their associated singular vectors. These left-singular vectors are the principal components in PCA, and the rows of V represent the compressed data. To decompress the data, compute $X' = \sigma_1 \vec{u}_1 \vec{v}_1^T + \dots + \sigma_k \vec{u}_k \vec{v}_k^T$.